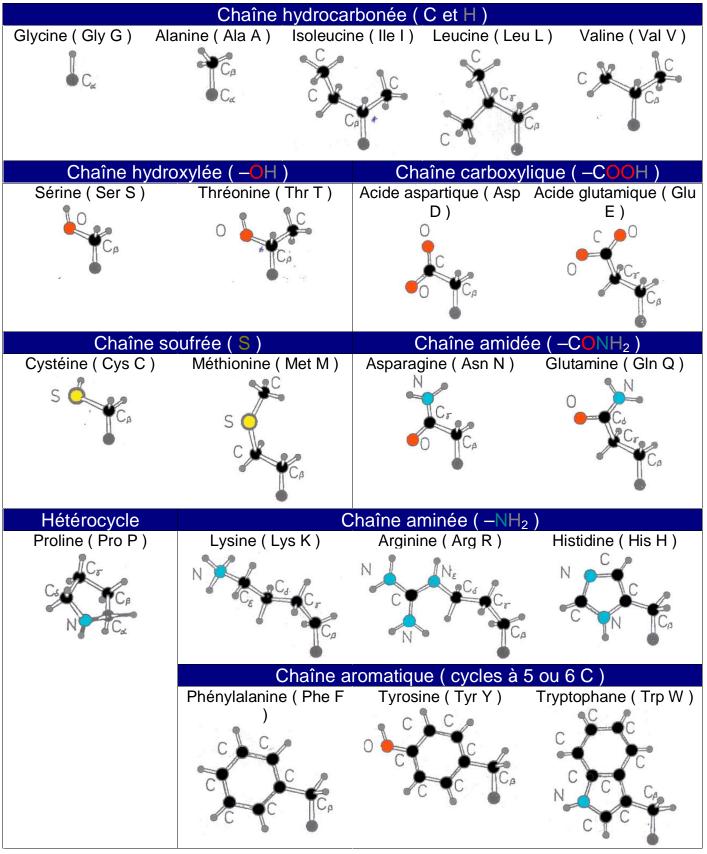

Les acides ñ-aminés

I Généralités des acides aminés

B. Propriétés acido-basiques


Les deux fonctions du carbone $\tilde{\mathbb{N}}$ sont ionisables. Elles sont sous forme ionisées à pH physiologique (pH Υ 7).

II_ Classifications des acides aminés

A. Classification chimique

Cette classification prend en compte les différents groupes fonctionnels des chaînes latérales.

L-Sélénocystéine

Il existe 20 acides aminés majeurs + un vingt-etunième à connaître : la Sélénocystéine.

B. Classification biologique

La classification biologique classe les acides aminés en fonction de plusieurs paramètres :

Interactions des chaînes latérales avec les molécules H₂O

La molécule d'eau fait partie des <u>solvants les plus polaires</u>. Ceci lui permet de <u>séparer facilement les charges des atomes</u> (notamment de ioniser les groupes fonctionnels des acides aminés).

La molécule d'eau a aussi une constante diélectrique élevée, limitant les interactions électriques dans celle-ci. Quelques exemples de solvants :

Solvant	Vide	Eau	CCI4	Éthanol
Moment dipolaire	0	1,8	0	1,8
Constante diélectrique	1	80	2	24

On peut alors séparer les résidus polaires qui réagiront avec H₂O en formant des <u>liaisons</u> hydrogènes, ce sont les acides aminés hydrophiles, des acides aminés qui ne le sont pas, les hydrophobes. La propriété qui le mesure est l'hydropathie. Plus un composé en a et moins il est hydrophile.

Interactions de charge des résidus

On ne peut comparer <u>que des</u> <u>acides aminés ayant des chaînes</u> <u>latérales ionisables</u>. Pour ce faire, on compare le pK_R de l'acide aminé au pH du milieu :

 $_{-}$ pH < pK_R à forme majoritairement acide (anionique) $_{-}$ pH < pK_R à forme majoritairement basique (cationique)

Cas de l'Histidine:

Son pK_R <u>varie entre 5,5 et 7,5</u>. Ainsi elle peut être soit cationique, soit

Chaîne	pK _R (dans l'eau)	Hydropathie
latérale		Hydrophobe
lle		4,5
Val		4,2
Leu		3,8
Phe		2,8
Cys	8,33 (neutre)	2,5
Met		1,9
Ala		1,8
Gly		-0,4
Thr		-0,7
Ser		-0,8
Trp		-0,9
Tyr	10,07 (neutre)	-1,3
Pro		-1,6
His	6 (ça dépend)	-3,2
Glu	4,25 (anionique)	-3,5
Gln		-3,5
Asp	3,86 (anionique)	-3,5
Asn		-3,5
Lys	10,53 (cationique)	-3,9
Arg	12,48 (cationique)	-4,5

Hydrophile

neutre. C'est d'ailleurs pour cela qu'elle joue <u>souvent un rôle dans le site actif</u> de certaines enzymes, par exemple dans le rôle de <u>transfert de protons</u>.

- État stérique des chaînes latérales :
- à Rigidité de la chaîne
 - Ex : le cycle de la Proline limite la liberté de mouvement des atomes
- à Encombrement de la chaîne latérale
 - Ex : Gly très peu encombré alors que Trp est une grosse molécule
 - La réactivité chimique des chaînes latérales :

On peut citer par exemple Cys dont le groupement –SH qui est très réactif, et qui a en plus la possibilité de créer des ponts disulfures