
Composition et représentation des molécules organiques

I_ Analyse quantitative élémentaire et détermination de la formule moléculaire d'un composé organique

Méthode de Liebigs

Soit la réaction : O_2 produit + CuO à CO_2 + H_2O + Cu

Calcul de la masse de C:

 $n_C = n_{CO2}$ ó $m_C = M_C * m_{CO2} / M_{CO2}$

Calcul de la masse de H:

 $n_{H} = n_{H2O}$ ó $m_{H} = M_{H} * m_{H2O} / M_{H2O}$

On obtient ainsi le pourcentage de chaque élément dans le produit, c'est la composition centésimale :

 $%C = m_C / m_{produit} * 100$ $%H = m_H / m_{produit} * 100$ %O = 100 - (%C + %H)

è Et ainsi les quantités de matière :

 $n_C = %C / M_C$

Ensuite on peut écrire la formule du produit : C_{nC}H_{nH}O_{nO}

Exemple : On a : $m_{produit} = 6,51$ mg ; $m_{CO2} = 12,46$ mg ; $m_{H2O} = 7,59$ mg On obtient ainsi : %C = 52,24 % ; %H = 13,005 % ; %O = 34,71 %

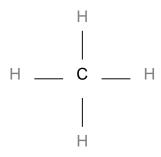
Et donc les quantités de matières relatives :

 $n_C = 4,35 \text{ mol}$; $n_H = 12,94 \text{ mol}$; $n_O = 2,16 \text{ mol}$

d'où $C_{4.35}H_{12.64}O_{2.16}$ è $C_{2.01}H_{5.59}O_1$ Y C_2H_6O

La somme des indices des atomes de valence impaire doit être paire.

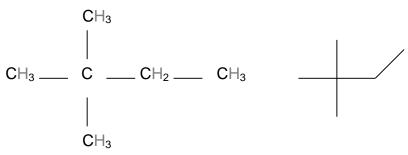
II Molécules organiques et leur représentation


1.Représentation dans un plan

Une même formule brute peut correspondre à plusieurs isomères (plusieurs constructions).

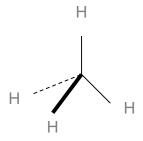
a) Formule développée plane

C'est une projection de la molécule sur un plan. Elle ne tient pas compte de l'arrangement géométrique des atomes.

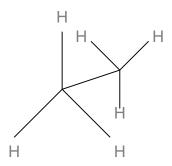

Ex:

b) Formule semi-développée plane (= formule semi-condensée)

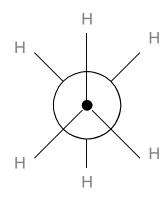
Ex : CH_3 — CH_2 —OH<u>c) Écriture simplifiée</u>


Ex:

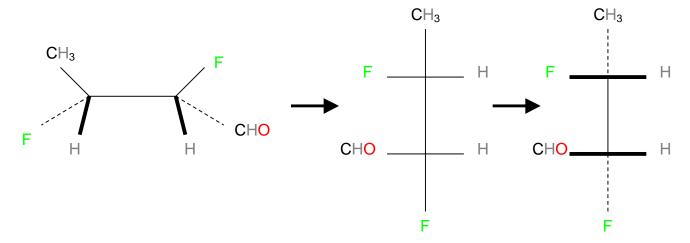
2. Représentation dans l'espace


a) Formule perspective = représentation de Cram

Ex:


b) Formule cavalière

Ex:


c) Formule projective plane de Newton

Ex:

d) Représentation de Fischer

Ex:

