<u>Cours n°3</u> <u>Équilibre acido-basique</u>

Dans une solution acide, on a:

$$pH = - log [H_3O^{\dagger}]$$

Pour un monoacide : $[H_3O^+] = C_{acide}$ Pour un diacide : $[H_3O^+] = 2 C_{acide}$

I_ L'eau : solvant

Le solvant est la solution qui dissout, le soluté est la matière dissoute. Les solutés sont dissociés en électrolytes (= ions) en solution aqueuse.

Les électrolytes forts sont <u>totalement dissociés</u> tandis que les électrolytes faibles ne le sont que <u>partiellement</u>.

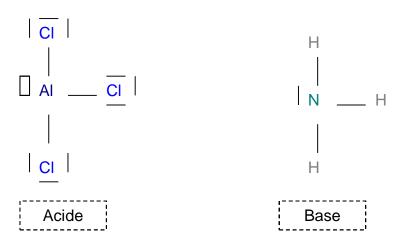
L'eau est un solvant <u>polaire</u> (il peut créer des liaisons hydrogène) et <u>ionisant</u> (μ = 1,85 D).

 $Ex : HCI + H2O à (H^{+} + CI^{-})_{aq}$

II Acides et bases : définitions générales

Les acides libèrent des H⁺ et les bases libèrent des OH⁻. Un acide donne un proton, une base prend un proton.

À un acide AH est associé une base A telle que :


 $AH = A^{-} + H^{+}$

Soient deux couples AH/A et BH+/B, alors on a :

 $AH + B = A^{-} + BH^{+}$

Ex: $HCI + NH_3$ à $NH_4^+ + CI^-$

Pour Lewis, un acide a un défaut d'électron et une base a un doublet d'électron libre :

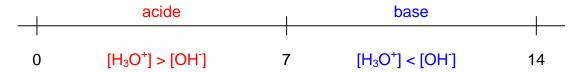
III Propriétés acido-basiques de l'eau

1.Réactions acido-basiques dans l'eau

L'eau est un acide et une base, on dit qu'elle est ampholyte :

 $H_2O = OH^- + H^+$

 $H_2O + H^+ = H_3O^+$


Réaction d'autoprotolyse de l'eau:

 $2H_{2}O = H_{3}O^{+} + OH^{-}$

De constante d'équilibre :

$$K_e = [H_3O^+] * [OH^-] = 10^{-14}$$

D'où $[H_3O^+] = [OH^-] = 10^{-7}$ pour une solution neutre électronégativement.

L'autoprotolyse est une réaction endothermique.

à \dot{a} 37°C, une solution est neutre \dot{a} pH = 6,8.

$$pK_e = - log K_e$$

Lorsqu'on mélange des solutions acides ou basiques, [H₃O⁺] * [OH⁻] = 10⁻¹⁴ est toujours vrai.

Force des acides et des bases

1) Acides forts

Ils sont totalement ionisés.

 $Ex : HCI + H_2O \grave{a} H_3O^+ + CI^-$

L'acide le plus fort dans l'eau est H₃O⁺.

2) Bases fortes Ex: NaOH + H₂O à Na⁺ H₂O + OH⁻

La base la plus forte dans l'eau est OH⁻.

3) Acides faibles

Hydrolyse partielle:

$$K_A = [base] * [H_3O^+] / [acide]$$

De même, pour une base faible :

$$K_B = [acide] * [OH^-] / [base]$$

On a :
$$K_A * K_B = K_e$$
 et $pK_e = pK_A + pK_B$

<u>Dans les calculs</u> : lorsque $[H_3O^+] > 3 * 10^{-7}$ mol.L⁻¹, on néglige $[OH^-]$. Sinon : $[H_3O^+] = C_{acide} * [OH^-]$

Coefficient de dissociation :

 \tilde{N} = nombre de moles qui ont réagi / nombre de moles initiales Ke / C = \tilde{N}^2 / $(1-\tilde{N})^2$

3.Mélange acide/base conjugué

$$pH = pK_A + log ([base] / [acide])$$

1) Acide fort + acide fort

 $pH = - \log [H_3O^{\dagger}]$

 $n_{H3O+} = n_{acide1} + n_{acide2}$

2) Acide fort + acide faible

L'acide fort impose le pH:

 $pH = - log [H_3O^+] = - log [acide fort]$

3) Base forte + base faible

La base forte impose le pH:

pH = -log [H₃O⁺] = -log (K_e / [OH⁻]) = pK_e + log [base forte]

4) Acide faible + acide faible

L'acide le plus fort détermine le pH (pK_A plus faible).

5) Sel d'acide fort et base faible

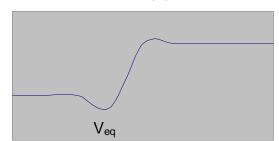
pH = 7

4.Titrages acido-basiques

On détermine la concentration C_A d'un acide (ou d'une base) par dosage avec une solution basique (ou acide) de concentration C_B connue.

$$AH + OH^{-} a$$
 $H_{2}O + A^{-}$
 $B + H_{3}O^{+} a$ $H_{2}O + BH^{+}$

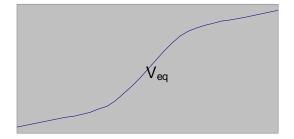
⊖ À l'équivalence :

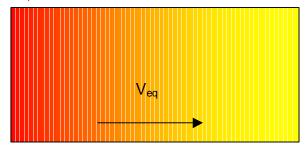

- _ Avec un monoacide et une monobase : $C_AV_A = C_BV_B$
- _ Avec un diacide et une monobase : 2 $C_AV_A = C_BV_B$

 $\underline{Taux\ d'avancement}$: $x = C_BV_B / C_AV_A = V_B / V_{eq} = 1$

Méthodes:

Conductimétrie


G = f(V)


Create PDF with GO2PDF for free, if you wish to remove this line, click here to buy Virtual PDF Printer

q pHmétrie

$$pH = f(V)$$

q Colorimétrie

